sábado, 24 de noviembre de 2012

RESUMEN SEMANA 8


4.1 Conceptos de mol soluciones y reacciones

El mol (símbolo: mol) es la unidad con que se mide la cantidad de sustancia, una de las siete magnitudes físicas fundamentales del Sistema Internacional de Unidades.
Dada cualquier sustancia (elemento químico, compuesto o material) y considerando a la vez un cierto tipo de entidades elementales que la componen, se define como un mol a la cantidad de esa sustancia que contiene tantas entidades elementales del tipo considerado, como átomos hay en 12 gramos de carbono-12. Esta definición no aclara a qué se refiere con cantidad de sustancia y su interpretación es motivo de debates, aunque normalmente se da por hecho que se refiere al número de entidades.
El número de unidades elementales –átomos, moléculas, iones, electrones, radicales u otras partículas o grupos específicos de éstas– existentes en un mol de sustancia es, por definición, una constante que no depende del material ni del tipo de partícula considerado. Esta cantidad es llamada número de Avogadro (NA) y equivale a:
Una disolución o solución es una mezcla homogénea de dos o más sustancias. La sustancia disuelta se denomina soluto y está presente generalmente en pequeña cantidad en comparación con la sustancia donde se disuelve denominada disolvente o solvente.
Una reacción química es todo proceso químico en el cual dos o más sustancias (llamadas reactantes), por efecto de un factor energético, se transforman en otras sustancias llamadas productos. Esas sustancias pueden ser elementos o compuestos. Un ejemplo de reacción química es la formación de óxido de hierro producida al reaccionar el oxígeno del aire con el hierro.
A la representación simbólica de las reacciones se les llama ecuaciones químicas.

4.2 Conceptos de estequiometria

En química, la estequiometria es el cálculo de las relaciones cuantitativas entre reactantes y productos en el transcurso de una reacción química.
El primero que enunció los principios de la estequiometria fue Jeremias Benjamin Richter (1762-1807), en 1792, quien describió la estequiometria de la siguiente manera:
La estequiometria es la ciencia que mide las proporciones cuantitativas o relaciones de masa en la que los elementos químicos que están implicados.
Principio
En una reacción química se observa una modificación de las sustancias presentes: los reactivos se consumen para dar lugar a los productos.
A escala microscópica, la reacción química es una modificación de los enlaces entre átomos, por desplazamientos de electrones: unos enlaces se rompen y otros se forman, pero los átomos implicados se conservan. Esto es lo que llamamos la ley de conservación de la masa, que implica las dos leyes siguientes:
la conservación del número de átomos de cada elemento químico
la conservación de la carga total
Las relaciones estequiométricas entre las cantidades de reactivos consumidos y productos formados dependen directamente de estas leyes de conservación, y están determinadas por la ecuación (ajustada) de la reacción.
Balance de materia
Una ecuación química es la representación escrita de una reacción química. Se dice que está ajustada o equilibrada cuando respeta la ley de conservación de la materia, según la cual la suma de los átomos de cada elemento debe ser igual en los reactivos y en los productos de la reacción. Para respetar estas reglas, se pone delante de cada especie química un número denominado coeficiente estequiométrico, que indica la proporción de cada especie involucrada.
Por ejemplo, en la reacción de combustión de metano (CH4), éste se combina con oxígeno molecular(O2) del aire para formar dióxido de carbono (CO2) y agua. (H2O). 

En esta ecuación, las incógnitas son a, b, c y d, que son los denominados coeficientes estequiométricos. Para calcularlos, debe tenerse en cuenta la ley de conservación de la materia, por lo que la suma de los átomos cada elemento debe ser igual en los reactivos y en los productos de la reacción. En el ejemplo, para el elemento hidrógeno (H) hay 4·a átomos en los reactivos y 2·d átomos en los productos. De esta manera se obtiene un sistema de ecuaciones:
Hidrógeno: 4·a = 2·d
Oxígeno: 2·b = 2·c + d
Carbono: a=c
Obteniendo en este caso es un sistema de ecuaciones indeterminado, con tres ecuaciones y cuatro incógnitas. Para resolverlo, se asigna un valor a una de las variables, obteniendo así una cuarta ecuación, que no debe ser combinación lineal de las demás. Por ejemplo: a=1.
Sustituyendo a=1 en la primera ecuación del sistema de ecuaciones, se obtiene d=2.
Sustituyendo a=1 en la tercera ecuación, se obtiene c=1.
Sustituyendo c=1 y d=2 en la segunda ecuación, se obtiene b=2.
Sustituyendo los coeficientes estequimétricos en la ecuación de la reacción.
Ésta dice que 1 molécula de metano reacciona con 2 moléculas de oxígeno para dar 1 molécula de dióxido de carbono y 2 moléculas de agua.
Al fijar arbitrariamente un coeficiente e ir deduciendo los demás pueden obtenerse valores racionales no enteros. En este caso, se multiplican todos los coeficientes por el mínimo común múltiplo de los denominadores. En reacciones más complejas, como es el caso de las reacciones redox, se emplea el método del ion-electrón.
Coeficiente estequiométrico
Es el coeficiente de una especie química que le corresponde en una ecuación química dada. 

El coeficiente del metano es 1, el del oxígeno 2, el del dióxido de carbono 1 y el del agua 2. Los coeficientes estequiométricos son en principio números enteros, aunque para ajustar ciertas reacciones alguna vez se emplean números fraccionarios. Es el número de moles de cada sustancia.
Cuando el coeficiente estequiométrico es igual a 1, no se escribe. Por eso, en el ejemplo CH4 y CO2 no llevan ningún coeficiente delante.
Mezcla, proporciones y condiciones estequiométricas
Cuando los reactivos de una reacción están en cantidades proporcionales a sus coeficientes estequiométricos se dice:
La mezcla es estequiométrica;
Los reactivos están en proporciones estequiométricas;
La reacción tiene lugar en condiciones estequiométricas;
Las tres expresiones tienen el mismo significado.
En estas condiciones, si la reacción es completa, todos los reactivos se consumirán dando las cantidades estequiométricas de productos correspondientes.
Si no en esta forma, existirá el reactivo limitante que es el que está en menor proporción y que con base en él se trabajan todos los cálculos.
Ejemplo
¿Qué cantidad de oxígeno es necesaria para reaccionar con 100 gramos de carbono produciendo dióxido de carbono?
Masa atómica del oxígeno = 15,9994.
Masa atómica del carbono = 12,0107.
para formar una molécula de dióxido de carbono, hacen falta un átomo de carbono y dos de oxígeno, o lo que es lo mismo, un mol de carbono y dos mol de oxígeno.


4.3 Leyes de estequiometricas


Ley de la conservación de la materia de Lavoisier
En toda reacción química la masa se conserva, esto es, la masa total de los reactivos es igual a la masa total de los productos. Es una de las leyes fundamentales en todas las ciencias naturales, La podemos enunciar de la siguiente manera: la ley de la conservación de la masa dice que en cualquier reacción química la masa se conserva, es decir, la masa y materia no se crea, ni se destruye, solo se transforma y permanece invariable.
Ley de Proust o de las proporciones constantes
En 1808, J.L. Proust llegó a la conclusión de que para formar un determinado compuesto, dos o más elementos químicos se unen y siempre en la misma proporción ponderal.
Una aplicación de la ley de Proust es la obtención de la denominada composición centesimal de un compuesto, esto es, el porcentaje ponderal que representa cada elemento dentro de la molécula.
Ley de Dalton o de las proporciones múltiples
Puede ocurrir que dos elementos se combinen entre sí para dar lugar a varios compuestos (en vez de uno solo, caso que contempla la ley de proust). Dalton en 1808 concluyo que: los pesos de uno de los elementos combinados con un mismo peso del otro guardaran entre sí una relación, expresable generalmente mediante el cociente de números enteros sencillos.
Ley de las proporciones equivalentes o recíprocas (Richter 1792)
"Si dos elementos se combinan con cierta masa fija de un tercero en cantidades a y b, respectivamente, en caso de que aquellos elementos se combinen entre sí, lo hacen con una relación de masas a/b, o con un múltiplo de la misma. Es decir, siempre que dos elementos reaccionan entre sí, lo hacen equivalente a equivalente o según múltiplos o submúltiplos de estos."

4.4 Ley de la conservación de la materia

La ley de conservación de la masa o ley de conservación de la materia o ley de Lomonósov-Lavoisier es una de las leyes fundamentales en todas las ciencias naturales. Fue elaborada independientemente por Mijaíl Lomonósov en 1745 y por Antoine Lavoisier en 1785. Se puede enunciar como «En una reacción química ordinaria la masa permanece constante, es decir, la masa consumida de los reactivos es igual a la masa obtenida de los productos». Una salvedad que hay que tener en cuenta es la existencia de las reacciones nucleares, en las que la masa sí se modifica de forma sutil, en estos casos en la suma de masas hay que tener en cuenta la equivalencia entre masa y energía. Esta ley es fundamental para una adecuada comprensión de la química. Está detrás de la descripción habitual de las reacciones químicas mediante la ecuación química, y de los métodos gravimétricos de la química analítica.


4.5 Ley de las proporciones constantes


La ley de las proporciones constantes o ley de las proporciones definidas es una de las leyes estequiométricas, según la cual «Cuando se combinan dos o más elementos para dar un determinado compuesto, siempre lo hacen en una relación de masas constantes». Fue enunciada por Louis Proust, basándose en experimentos que llevó a cabo a principios del siglo XIX por lo que también se conoce como Ley de Proust.
Para los compuestos que la siguen, por tanto, la proporción de masas entre los elementos que los forman es constante. En términos más modernos de la fórmula química, esta ley implica que siempre se van a poder asignar subíndices fijos a cada compuesto. Hay que notar que existe una clase de compuestos, denominados compuestos no estequiométricos (también llamados berthóllidos), que no siguen esta ley. Para estos compuestos, la razón entre los elementos pueden variar continuamente entre ciertos límites. Naturalmente, otras sustancias como las aleaciones o los coloides, que no son propiamente compuestos sino mezclas, tampoco siguen esta ley.

4.6 Ley de las proporciones múltiples


La ley de Dalton o ley de las proporciones múltiples formulada en 1803 por John Dalton, es una de las leyes estequiométricas más básicas. Fue demostrada por el químico y físico francés Louis Joseph Gay-Lussac.

Enunciado
"Cuando un elemento se combina con otro para dar más de un compuesto, las masas de uno de ellos que se unen a una masa fija del otro están en relación de números enteros y sencillos".

Explicación
Esta ley afirma que cuando dos elementos se combinan para originar diferentes compuestos, dada una cantidad fija de uno de ellos, las diferentes cantidades del otro se combinan con dicha cantidad fija para dar como producto los compuestos, están en relación de números enteros sencillos.
Es decir, que cuando dos elementos A y B forman más de un compuesto, las cantidades de A que se combinan en estos compuestos, con una cantidad fija de B, están en relación de números enteros sencillos.
Esta fue la última de las leyes ponderales en postularse. Dalton trabajó en un fenómeno del que Proust no se había percatado, y es el hecho de que existen algunos elementos que pueden relacionarse entre sí en distintas proporciones para formar distintos compuestos.
Así, por ejemplo, hay dos óxidos de cobre que tienen un 79,89% de cobre el CuO y el Cu2O que tiene un 88,82% de cobre, que equivalen a 3,973 gramos de cobre por gramo de oxígeno en el primer caso y 7,945 gramos de cobre por gramo de oxígeno en el segundo. La relación entre ambas cantidades es de 1:2 como se expresa actualmente con las fórmulas de los compuestos derivados de la teoría atómica.
4.7 CALCULOS ESTEQUIOMETRICOS

La fabricación de productos químicos es uno de los esfuerzos industriales más grandes del mundo. Las industrias químicas son la base de cualquier sociedad industrial. Dependemos de ellas respecto a productos que utilizamos a diario como gasolina y lubricantes de la industria del petróleo; alimentos y medicinas de la industria alimentaria; telas y ropa de las industrias textiles. Estas son sólo unos cuantos ejemplos pero casi todo lo que compramos diariamente se fabrica mediante algún proceso químico o al menos incluye el uso de productos químicos.
Por razones económicas los procesos químicos y la producción de sustancias químicas deben realizarse con el menor desperdicio posible, lo que se conoce como "optimización de procesos". Cuando se tiene una reacción química, el Químico se interesa en la cantidad de producto que puede formarse a partir de cantidades establecidas de reactivos. Esto también es importante en la mayoría de las aplicaciones de las reacciones, tanto en la investigación como en la industria.
En una reacción química siempre se conserva la masa, de ahí que una cantidad específica de reactivos al reaccionar, formará productos cuya masa será igual a la de los reactivos. Al químico le interesa entonces la relación que guardan entre sí las masas de los reactivos y los productos individualmente.
Los cálculos que comprenden estas relaciones de masa se conocen como cálculos estequiométricos.
La estequiometría es el concepto usado para designar a la parte de la química que estudia las relaciones cuantitativas de las sustancias y sus reacciones. En su origen etimológico, se compone de dos raíces , estequio que se refiere a las partes o elementos de los compuestos y metría, que dice sobre la medida de las masas.
Cuando se expresa una reacción, la primera condición para los cálculos estequimétricos es que se encuentre balanceada, por ejemplo :
Mg + O2 ® MgO
2 Mg + O2 ® 2 MgO Reacción balanceada
La reacción anterior se lee como : 2 ATG de Magnesio reaccionan con un mol de Oxígeno y producen 2 moles de Oxído de magnesio (reacción de síntesis)
2ATG Mg = 49 g 1 mol de O2 = 32 g 2 moles de MgO = 81 g
49 g
+
32 g
=
81 g
2Mg
+
O2
®
2 MgO
Lo que demuestra la ley de Lavoisiere " la materia no se crea ni se destruye, sólo se transforma " , cuando reaccionan 49g más 32g y se producen 81 g .
¿Cómo se realizan los cálculos estequiométricos?
http://payala.mayo.uson.mx/QOnline/greenbal.gifATG

No hay comentarios:

Publicar un comentario